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Abstract. We present 2 Wilson renormalization group study of the Kondo problem in a
pseudo-gap Fermi system with density of states p(e — ¢r) = Cl¢ — er|". For initial
couplings Jp < J, & —2r the impurity spin is quenched, but we find that the model
exhibits uausual low-temperature properties unique to pseudo-gap systems. For r < (.5 the
ground state is characterized by the J = —oo fixed point, with a residual magnetic moment
and non-vanishing entropy. The magnetic susceptibility is shown to fit the universal curve,
Tx(Ty=#/8+ (1 —r =3} FAUT/Te)™Y + (T/Tx)1~")), where f(x) is the universal
function for the ordinary Kondo problem. For r > 0.5 we also find the quenching of the impurity
spin, yet there is no Kondo effect exhibited in the total magnetic susceptibility.

Many interesting materials can be described with Fermi systems with a pseudo-gap, i.e. a
gapless energy spectrum with a vanishing density of states at the Fermi level. This situation
arises, for example, in bulk semiconductors and (quasi-) two-dimensional metals when the
conduction and valence bands touch at the symmetry points of the Brillouin zone. Some
single-particle excitations in anisotropic superconductors also exhibit pseudo-gap spectra.
The interaction of magnetic ions with the electrons -of such systems can lead to different
properties from those in normal Fermi systems. Obviously imteresting questions involve
the Kondo effect, generally believed to be a phenomenon asscciated with the existence of
a sharp Fermi surface: does the Kondo effect persist in systems with a small energy gap
or a pseudo-gap? If it does, what are the universal properties in the Kondo regime? In
this article we present our study of the Kondo model in pseudo-gap Fermi systems. We
confine our attention to pseudo-gap Fermi systems partly because we can apply Wilson’s
RG method using a diagonalization scheme we have developed. The RG calculation permits
us to obtain physical intuition about the low-temperature properties as well as some ‘almost
exact’ results.

The problem of magnetic impurities in pseudo-gap Fermi systems was first investigated
by Withoff and Fradkin [1], who studied the Kondo model with the density of states
ple) = Cle[" (with band cut-off Dy and Fermi energy set to zero) using perturbative
scaling and the 1/N expansion to leading order. They argued that, with r > 0, there is
a transition as the coupling constant J is varied across the critical value J, o« —rDy: for
a weak initial coupling (J. < J < 0), there is no Kondo effect, while for strong initial
coupling J < J,, there is a Kondo effect with the Kondo temperatere vanishing at J, as
Tx = |J — I.|Y/". Thermodynamic properties were not computed and differences from
the Kondo effect in-normal Fermi systems were not investigated. We use Wilson’s RG
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method, a non-perturbative technique, calculate the magnetic susceptibility as a function of
temperature and perform detailed analysis of the fixed points. While our results confirm the
transition found in [1), we find several new resnlts that are unique to pseudo-gap systems.

We now give a summary of the results of the numerical RG calculations and their
physical interpretation using an analysis that parallels Nozieres’ Fermi liquid analysis of the
ordinary Kondo fixed point. The technical details of the fixed-point analysis and a detailed
description of the susceptibility are given below.

We start with the Hamiltonian given below that describes a spin-% impurity, S,
interacting antiferromagnetically at the origin with the local spin density of electrons which
have a symmetric density of states p(€) = [(1 + r)/2]|2|" with 2 band cnt-off at Dy = 1:

1 1 pl
I
Hy = f €CL Ceapl€) de — JpS f f Cjﬁ-z-o'm,cer,p(e)p(e’) de d¢’
-1 -1J-1

1
1
= fleC;*;,pr(e) de — JpS - f[;;i‘o'uvfﬂv (1

where

1
fou = f_ P de

and a sum over the repeated spin index is assumed.

For J < J; the low-temperature behaviour is governed by an effective J = —oo fixed
point where the localized electronic degree of freedom fy and the impurity spin are frozen
out. For r < 1/2, calculations described in detail below lead to the following results for
the temperature dependence of the effective moment T xinp at low temperatures (Ximp is
the impurity susceptibility defined as the total susceptibility minus the susceptibility of the
pure system [2, 3]):

T Ximp = 7/8+ x1(T/ Te)'™" + xa(T/ T )™ @)

where x; and x, are constants (for r = 0 it can be shown that ¥; = x5). In addition, the
free energy is given by

F=-TQrin2+ F(T/T)'™). (3)
Therefore, we have for the the entropy

Simp = 2rIn2+ Q —)F(T/ T 4
and the specific heat

Cimp = @~ r¥(1 = )R (T/ Tg)'™. &)

The constants X1, x2 and Fy are of the order of unity. It is worth noting that in the absence
of the impurity spin the specific heat of the electrons at low temperatures is proportional to
T and the susceptibility vanishes as 77 (or H" as a function of the field); these results
are a consequence of the pseudo-gap spectrum and reduce to well known results as r — 0.

The crucial feature of the zero-temperature properties of the model is that both the
effective moment T i, and the entropy are non-zero. To understand these unusual
properties better, we consider the following analysis, in the spirit of Nozieres’ Fermi liquid
description of the ordinary Kondo effect [6] which exploited a phase-shift analysis. At zero
temperature, the impurity spin and f; electron form a singlet leading to a ground state which
is a linear combination of the states with fﬂ‘L fou = 1. If the up-spin conduction electron

channel is constrained by the condition f0+ Jo =1, then the down-spin channrel is constrained
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by the condition fy" fo =0, and vice versa. The ground state can thus be characterized by
stedying the energy spectrum of the single-particle Hamiltonian (for a single channe])

1
H,= f eCHC.p(e) de + Gfyf fo ®
-1

in the limit G ~ %00, The term Gf; f; Tepresents potential scattering: the energy structure
with the constraint f;7 fo = 0 or 1 is obtained by setting G — oo or — oo, To obtain the
extra magnetic moment and entropy induced by this potential scattering, we first calculate
the phase shift, and obtain from it the effective density of states, from which the zero-
temperature physical properties can be evaluated. The phase shift §%(¢) can be obtained
using the relation

mp(€) _ @

1 8% = liMgos oot
ne =Moo p 3 T1/G

where

! d !
e Fo= [ 2L g (T s

ple) = p

Thus we have the phase shift given by 8%(¢) = 7 /24 (mr /D)sgn(e) +0(e! ") irrespective of
the sign of G (both channels of up-spin and down-spin electrons are described by the same
phase shift). Using this phase shift, the change in the density of states can be evaluated:
8p(e) = (1/7)dé%/de = r 8(¢). It is this delta-function density of states that gives rise to
the extra susceptibility and entropy:

1 , r r
= - d = —_—— ! O = — L -
sx=13 [ #@r@te= 57O =g ®
or T§x =r/8. In the preceding equation f(e) = 1/(1 + €#¢) is the Fermi function. The
extra entropy is given by

1
58 = 2[ sp(e)In(l +¢P¢) de = 2r In2. (9
-1 )

These results confirm our fixed-point analysis. The delta function in the extra density of
states reflects the difference between the pseudo-gap power-law density of states of the
original electrons and the densities of states that are non-zero at the Fermi level. Such a
difference can alsc give rise to qualitatively different results in other related problems. The
Anderson orthogonality catastrophe is not operative and the overlap between Fermi seas with
and without potential scattering is non-vanishing. This in turn leads to an additional delta-
function contribution at the threshold for the XPS spectrum calculated with this power-law
density of states. We have verified these results explicitly.

Wilson’s RG method is a very powerful too!} for studying magnetic impurities in metals
that starts from a tridiagonalized Hamiltonian in which different energy scales are well
separated. It is impossible to describe the method here and for details the reader is referred to
[2, 3]. Previously the method was restricted to impurity problems with constant conduction
electron densities of states due to the difficulty in obtaining the tridiagonalized Hamiltonian
in the case of non-constant density of states. This difficulty has been overcome with a
new tridiagonalization technique recently proposed by us [3]; this makes our current study
possible.
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The Hamiltonian in equation (1) can be discretized logarithmically (with the scaling
factor A) and tridiagonalized using the procedure in [3]. The rtesulting tridiagonalized
Hamiltonian can be written as

1+A7TE
Hy = =5 D Jen st + 5O = JS fos 3wt (10

=
in terms of the Wilson basis set {f,,n = 0,1, ...} that consists of a hierarchy of states
from the most localized high-energy state directly coupled to the impurity, fp, to spatially
extended low-energy states. The coefﬁments {£,} are determined from the tridiagonalization
procedure. To a very good accuracy we found that, for large n, &1/, = A% when n is
odd, and &,_; /&, = AA—"/Q@U+) when n is even. This has been checked extensively for
r € 1, numerically. When r = 0, which corresponds to the constant density of states, this
result reduces to the the analytical values for {£,} [2]. (Note that there is a difference of a

factor of A~"2 between our definition of &, and those in [2, 3].)

In order to carry out the RG calculation, we need to rescale the Hamiltonian at each

iteration step. The rescaling is done by defining Hy as follows:

1 = 2
Hy=— {nzol’ﬁn(f,mfmu +HO)) — T oS - fis 20‘p,vf0u} : ay
The rescaling factor is Sy = 2((1 + A~1)&x—;), which is proportional to AN+ for
large N. The recursion relation that is the basis of our numerical RG calculation can now
be written as

Hys = %HN + (it Fivets + HO). (12)

As we increase N, the system evolves from high temperatures to low temperatures. At
a given N, the thermodynamic quantities are calculated for Ty = 1/ (BSx) for a selected
value of 8. By studying the evolution of the many-body energy level structures we can
obtain information near the fixed points of the Hamiltonian.

We now provide some of the technical details of the fixed-point analysis that underlie
the results described earlier. We will analyse the fixed points of the Hamiltonian for various
r and initial coupling Jy. We follow [2, 3] and consider the J = 0 and J = —oco fixed
points. The fixed-point Hamiltonian for the J = 0 fixed point is

1 N-1
Hy = L& frre FHOL (13)
N—-1 p=p

There are two fixed points: one for even and another for odd N, just as in the case of the
constant density of states. When N is odd, the single-particle energy levels (the example
given here is for r = 0.2 and A = 2.5) are

7} = £0.73539, +:2.1339, £4.6050, - - -, £AYIID L. (14)
while for even N, the single-particle energy levels are
Af =0, £1.4931, +£3.3920, £7.2812, - .-, A UDUEIHZ (15)

We have also checked that f, fo, fu, ... scale as A™¥/4 while fi, fa, fs,... scale as
ATNGEWEU+) - Simple power counting reveals that there are no marginal and relevant
operators around this fixed point. The three leading irrelevant operators are o, o
AN+ g, fo;%o'uvf()vv 0y O AN/(ZU-E-’D(fO';ﬁM + HC), and o3 ANKZ(H’”(fd;fD“ —
1)2. 01, 03, and o3 scale with N as A~N/QU+N A—N/2 and A-NU+ZVQA+) regpectively.
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Thus, for small values of the initial coupling Jy, the J = @ fixed point is stable. However,
the fixed point is unstable for large coupling, as has been argued in [1]. By solving the
perturbative scaling equation in [1], one can find a transition at J, = —2r/(1 + r): for
Jg < J, the J = 0 fixed point is vnstable. Numerical values of J, are also very close to
those obtained by perturbative scaling for smail r. When the J = 0 fixed point becomes
unstable the Hamiltonian evolves to a different fixed point at zero temperature. We find
that for r < 1/2 this fixed point is the J = —c0 fixed point described below; while for
r > 1/2 the zero-temperature fixed point is a completely new one, the structure of which
we still do not understand.

The Hamiltonian for the J = —oo fixed point (both the impurity spin operator and fy
are frozen out) is

=— Z[su( o farie +HOL (16)

Because £, /E, is not the same for even and odd n, the J = --00 fixed-point energy levels
are not the same as those at the J = 0 fixed-point Hamiltonian. This is in contrast to
the case of a constant density of states where the energy levels are the same except for an
odd-even switch. When N is odd, the numerical results for the energy levels are:

7 =0, £1.2545, £2.9109, £6.2500, - - -, A/ 712 . (17}
while for an even N, the single-particle energy levels are
= 40.63086, £2.1247, +4.6050, - - -, AP+ (18)

In addition, we have also found that f; A‘“"’Nf'(‘““”” and fp oc A—CN/BU+D - Ag
in the case of constant density of states, we can write down two leading irrelevant operators:
01 = w AN/GI+N( fih Foy + HC) and O = wy AN+ ff; fin — D2 Itis easy to see
that Oy and Oy scale as A~V gpg A—NA=2/ QA+ regpectively.

For r > 0 O, is more dominant than ;. In fact, it becomes a relevant operator when
r > 1/2. Thus, as we mentioned earlier, zero-temperature fixed point for r > 1/2, is
different from the J = —co fixed point. Returning to the case of r < 1/2, we have checked
that the energy level structure at low temperatures is well described by adding these two
operators to the fixed-point Hamiltonian. The magnitudes of w; and w, can be determined
by fitting the energy levels. Since the irrelevant terms are of order 1 when T = Tg, wy and
w» are of the order (1/Tx)'™" and (1/Tx )"~ respectively.

With this fixed-point, single-particle, Hamiltonian we can calculate T ximp at T = Q.
For odd N (the same result is obtained for the even-N fixed-point Hamiltonian) T x (0} can
be calculated using the formulas in {2, 3]:

. 1 o0 —ﬁﬂj . —13'1(
Tx(0) =limz g4, 3 + Z m - Z m 19

The summations in the above formulas can be calculated using the trick explained in
[2]; the result is T x;mp(0) = r/8. Similarly we can calculate the zero-temperature effective
entropy for the impurity: Sin,(0) = 2rIn2. These results were given earlier. We can then
calculate the contribution from @) and O,, following [3], without obtaining the explicit
values for the coefficients, and these lead to the (T/Tx)'™" and (T/Tx)'~% dependences
shown in equations (2)}-(5).

When r > 1/2, as we mentioned earlier, the ground state for Jy < J, cannot be
described by the J = —co fixed point, which is essentially a pseudo-gap Fermi liquid with
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Figure 1. T x;pp plotied as a function of T for r = 0.2 and Jp = —0.38, —0.40, —0.42, —0.44,
—0.48, —0.52, —0.60 and —1.0. Note that there is a transition at around Jp =~ —0.40 where the
Kondo effect starts to show. Also note the non-zero magnetic moment whee T — §.
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Figure 2. D(T) plotted as a function of T for r == 0.2 and Jy = —0.36 and —0.48.

the density of states containing a delta-function component. We suspect that the ground
state in this case may exhibit essentially non-Fermi liquid behaviour.

We now present our numerical results for the calculation of the impurity susceptibility
Ximp and zero-frequency response function {(S;; S;)) (S, is the z-component of the impurity
spin), using the procedures explained in [2, 3] and {4] respectively.

Most of our calculations are done for r = 0.05,0.1,0.2,0.3,0.4 and 0.6. A =2.51s
used for the calculation of Ximp and A = 3.0 is used for the calculation of {(5;; 5;)), except
for the cases in which r = 0.4 and 0.6 where A = 3.0 and 4.0 are used respectively.

We first present our results for r < % Figure 1 shows the temperature dependence of
the susceptibility for the case r = 0.2 and selected values of Jp. It is clear that there is a
critical coupling J, separating the regime with the Kondo effect and the one without the
Kondo effect. Also note the existence of a residual moment in the Kondo regime (Jp < J;).

Figure 2 shows the zero-frequency response function D(T) = T{(S;; S;}} in these two
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regimes. In the case of constant density of states, D(T) and T x have the same temperature
dependence, and for small Jy their values are almost the same [4]. This is apparently not
true with the power-law density of states. In particular D(T) tends to zero as T — 0; this
suggests that the impurity spin itself is quenched, but there is a residual moment due to the
contribution from conduction electron susceptibility.

0.4 . T T vy -

r=0.05,J0=-0.18 =
0.35 1 ) r=0.10,J=-0.28 + 4
r=0.20,0=~0.,46 =©
0.3 F r=0.20,J=-0.52 «x |
: r=0.20,J=-0.60 =
r=0.30,J=-0.68 =«
0.25 1 r=0.40,3=-0.96 * 1
0.2 r
E
0.15 ¢
0.1 r
.05 |
O PRI T s at 1 ! el I
0.001 ©0.01 0.1 1 10 100

X

Figure 3. F = (TXimp(T) — #/8)/(1 — r — 3r%/2) versus x = L((F/Te)"™¥ + (T/Tx)'™")
using the susceptibility data for r = (.05, 0.1, 0.2, 0.3, and 0.4 and selected values of Jy, which
are shown in the legend of the plot. The solid line represents the universat curve f(x).

One of the important features of the Kondo problem is that thermodynamic quantities
follow vniversal curves. To investigate universality in the case of the power-law density of
states, we attempt to fit the impurity suscepiibility using the function

T Yimp(T) = % + Bf @ (T/T)'™ + ea(T/ Tx)' ™) (20)

where Ty is the Kondo temperature and f(x) is the umiversal function describing the
susceptibility in the Kondo problem for a constant density of states. The form of the
universal function is chosen by taking into account the fact that the leading low-temperature
behaviour is given by equation (2). For r = 0 ¢; and ¢, are egual (since x; = x2 in
equation (2)); while for r > 0 ¢; and ¢, can be made equal by redefining Tx . We can thus set
¢1 = ¢z = 1/2 in equation {(20). The coefficient B is related to my, the value of T x,, in the
limit T {{T{{Dp: B = 4(my — r/8). Unfortunately, we do not have an analytical resuvlt for
mg; we have to choose B empirically. Qur choiceis B=1—r ~3r2/2. From figure 3, it is
clear that the data plot of F = (T Xipp(T)—r/8)/B versus %((T/ T)'=% +(T/ Tg)'7) falls
on the universal curve f{xr); this provides strong numerical evidence of universality. Note

that when plotting the figure, Tk is chosen such that F(T = Tyx) = Fy with Fy = 0.125.
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Figure 4. T Ximp, denoted as m(T) in the legend, and D(T) plotted as a function of T for
r=06and Jjy=-~20.

We have also investigated the dependence of the Kondo temperature as a function of
Jo for a given r. We find 2 linear relationship between T} and versus Jy, thus confirming
the result obtained in [1]: Tk o |Jo — J|Y".

We have also calculated T np (T} and D(T) for the case r > 1/2. For Jy > J. the
impurity spin is not frozen as T — 0, and there is no qualitative difference from the case
r < 1/2, For J < J. (the results are plotted in figure 4), on the other hand, there is
qualitative difference, as expected from discussion previous. The impurity spin is quenched
(D(T) — 0 as T — 0); however, there is no Kondo effect quenching in T ¥, (7).

In conclusion we have performed a Wilson renormalization group calculation of the
Kondo model with the density of states p(¢) = C|¢|", representing a pseudo-gap spectrum.
A rich spectrum of interesting behaviours is found, some of which can be understood clearly
in the framework of Wilson’s RG calculation and associated fixed-point analysis: for weak
coupling Jo > J, =~ —2r, there is no Kondo effect, and the system is shown to evolve to
the J = O fixed point. On the other hand, for soong coupling Jy < J;, the system behaves
guite differently for r less than or larger than 1/2. For r < 1/2, the system is found to
evolve to the J = —oo fixed point, and the susceptibility is found to fit the universal curve:
T Ximp(T) = r/8 + (1 = r — 3r/2) F (T /Tx)% + (T/Tx)'™")). We have also argued
that the ground state is effectively a pseudo-gap Fermi liquid with a delta-function excitation
at the Fermi level. The delta-function component in the excitation specttum gives rise to
a residual moment and residual entropy. For r > 1/2, the J = —co fixed point becomes
unstable and the simple Fermi liquid picture breaks down. Although there is a quenching
of the impurity spin, the total magnetic susceptibility does not show the Kondo effect.
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