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LEITER TO THE EDITOR 

The Kondo effect in pseuds-gap Fermi systems: a 
renormalization group study 
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t Department of Physics and Computational Science Pmgmnme, National University of 
Singapore, Singapore OS11 
% Department of Physics, The Ohio State University, Columbus, OH 43210. USA 

Received 19 June 1995 

Abstract. We present a Wilson renormalization group study of the Konda problem in a 
pseudo-gap Fermi system with density of states p(f - B F )  = CIS - 6 ~ 1 ~ .  For initial 
couplings Jo c J, % -2 the impurity spin is quenched, but we find that the model 
exhibits unusual low-temperature pmpedes unique to pseudo-gap systems. For r < 0.5 the 
ground stme is characterized by the J = -a fixed point, with a residual magnetic moment 
and non-vanishing entropy. The magnetic susceptibility is shown to fit the universal curve, 
T x ( T )  = r /8  + (1 - r - 3r2/2) f (f ((T/T,v)’-2r + (T/T,v)L-r)) ,  where f (x) is the universal 
function for the ordinary Kondo pmbiem For I > 0.5 we also find the quenching of the impurity 
spin, yet there is no Kondo effect exhibited in the mal m w e t i c  susceptibility. 

Many interesting materials can be described with Fermi systems with a pseudo-gap, i.e. a 
gapless energy spectrum with a vanishing density of states at the Fermi level. This situation 
arises, for example, in bulk semiconductors and (quasi-) two-dimensional metals when the 
conduction and valence bands touch at the symmetry points of the Brillouin zone. Some 
single-particle excitations in anisotropic superconductors also exhibit pseudo-gap spectra. 
The interaction of magnetic ions with the electrons .of such systems can lead to different 
properties from those in normal Fermi systems. Obviously interesting questions involve 
the Kondo effect, generally believed to be a phenomenon associated with the existence of 
a sharp Fermi surface: does the Kondo effect persist in systems with a small energy gap 
or a pseudo-gap? If it does, what are the universal properties in the Kondo regime? In 
this article we present our study of the Kondo model in pseudo-gap Fermi systems. We 
confine our attention to pseudo-gap Fermi systems partly because we can apply Wilson’s 
RG method using a diagonalization scheme we have developed. The RG calculation permits 
us to obtain physical intuition about the low-temperature properties as well as some ‘almost 
exact’ results. 

The problem of magnetic impurities in pseudo-gap Fermi systems was first investigated 
by Withoff and Fradkin 111, who studied the Kondo model with the density of states 
p ( t )  = Clsl‘ (with band cut-off Do and Fermi energy set to zero) using perturbative~ 
scaling and the 1/N expansion to leading order. They argued that, with r > 0, there is 
a transition as ,the coupling constant J is varied across the critical value Jc c( -r&: for 
a weak initial coupling (J, c J c 0), there is no Kondo effect, while for strong initial 
coupling J < .Ic, there is a Kondo effect with the Kondo temperature vanishing at .I, as 
TK M IJ - Jcll/r. Thermodynamic properties were nor computed and differences from 
the Kondo effect in~normal Fermi systems were not investigated. We use Wilson’s RG 
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method, a non-perturbative technique, calculate the magnetic susceptibility as a function of 
temperature and perform detailed analysis of the fixed points. While our results confirm the 
transition found in [I], we find several new results that are unique to pseudo-gap systems. 

We now give a summary of the results of the numerical RG calculations and their 
physical interpretation using an analysis that parallels Nozieres' Fermi liquid analysis of the 
ordinary Kondo fixed point. The technical details of the fixed-point analysis and a detailed 
description of the susceptibility are given below. 

We start with the Hamiltonian given below that describes a spin-; impurity, S, 
interacting antiferromagnetically at the origin with the local spin density of electrons which 
have a symmehic density of states p(6) = [(l + r ) / Z ] l < ~  with a band cut-off at 00 = 1: 

where 

and a sum over the repeated spin index is assumed. 
For J < J ,  the low-temperature behaviour is governed by an effective J = -SI fixed 

point where the localized electronic degree of freedom fo and the impurity spin are frozen 
out. For r < 1/2, calculations described in detail below lead to the following results for 
the temperature dependence of the effective moment Tximp at low temperatures (ximp is 
the impurity susceptibility defined as the total susceptibility minus the susceptibility of the 
pure system [2, 31): 

TXimp = r/8 + Xi(T/Tx)l-r + XZ(T/TK)'-> 

F = -T(2rIn2+Fl(T/TK)I-') .  (3) 

simp = 27' In 2 f (2  - r)Fl (TIT$-' (4) 

(2) 

where x1 and xz are constants (for r = 0 it can be shown that x1 = xz ) .  In addition, the 
free energy is given by 

Therefore, we have for the the entropy 

and the specific heat 

ci, = (2 - r ) ( l  - r)Fi(T/TK)'-' 

The constants X I ,  xz and F1 are of the order of unity. It is worth noting that in the absence 
of the impurity spin the specific heat of the electrons at low temperatures is proportional to 
TItr and the susceptibility vanishes as T' (or H' as a function of the field); these results 
are a consequence of the pseudo-gap specmm and reduce to well known results as r --L 0. 

The crucial feature of the zero-temperature properties of the model is that both the 
effective moment Tximp and the entropy are non-zero. To understand these unusual 
properties better, we consider the following analysis, in the spirit of Nozieres' Fermi liquid 
description of the ordinary Kondo effect [6] which exploited a phase-shift analysis. At zero 
temperature, the impurity spin and fo electron form a singlet leading to a ground state which 
is a linear combination of the states with f$hP = 1. If the up-spin conduction electron 
channel is constrained by the condition f:fi = 1, then the down-spin channel is constrained 
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by the condition f;fo = 0, and vice versa. The ground state can thus be characterized by 
studying the energy spectrum of the singleparticle Hamiltonian (for a single channel) 

in the limit G -+ zkm. The term Gfzfo represents potential scattering: the energy sfmcture 
with the constraint f2fo = 0 or 1 is obtained by setting G -+ CO or - w. To obtain the 
extra magnetic moment and entropy induced by this potential scattering, we first calculate 
the phase shift, and obtain from it the effective density of states, from which the zero- 
temperature physical properties can be evaluated. The phase shift So(€) can be obtained 
using the relation 

tans' =lime,+, 
F ( E )  - 1/G (7) 

where 

Thus we have the phase shift given by So(€) = n/2+(nr/2)sgn(~)+O(d-') irrespective of 
the sign of G (both channels of up-spin and down-spin electrons are described by the same 
phase shift). Using this phase shift, the change in the density of states can be evaluated: 
6p(e)  = (l/n)dSo/de = r S ( E ) .  It is this delra-function density of states that gives rise to 
the extra susceptibility and entropy: 

or T S x  = r /8 .  In the preceding equation f(6) = 1/(1 +eaf) is the Fermi function. The 
extra entropy is given by 

I 
6.9 = 2 @ ( E )  In(1 +e-#') de = 2r 1112. (9) 1, 

These results confirm our fixed-point analysis. The delta function in the extra density of 
states reflects the difference between the pseudo-gap power-law density of states of &e 
original electrons and the densities of states that are non-zero at the Fermi level. Such a 
difference can also give rise to qualitatively different results in other related problems. The 
Anderson orthogonality catastrophe is not operative and the overlap between Fermi seas with 
and without potential scattering is non-vanishing. This in tum leads to an additional delta- 
function contribution at the threshold for the XPS spectrum calculated with this power-law 
density of states. We have verified these results explicitly. 

Wilson's RG method is a very powerful tool for studying magnetic impurities in metals 
that starts from a tridiagonaliized Hamiltonian in which different energy scales are well 
separated. It is impossible to describe the method here and for details the reader is referred to 
12, 31. Previously the method was restricted to impurity problems with constant conduction 
electron densities of states due to the difficulty in obtaining the tridiagonalized Hamiltonian 
in the case of non-constant density of states. This difficulty has been overcome with a 
new tridiagonalization technique recently proposed by us 151; this makes our current study 
possible. 
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The Hamiltonian in equation (1) can be discretized logarithmically (with the scaIing 
factor A) and tridiagonalized using the procedure in [5]. The resulting tridiagonalized 
Hamiltonian can be written as 

in terms of the Wilson basis set { fn, n = 0,1, . . .) that consists of a hierarchy of states 
from the most localized high-energy state directly coupled to the impurity, fo, to spatially 
extended low-energy states. The coefficients ($,J are determined from the tridiagonalization 
procedure. To a very good accuracy we found that, for large n, $,,-I = A'/' when n is 
odd, and f , , - l / fn  = when n is even. This has been checked extensively for 
r < 1, numerically. When r = 0, which corresponds to the constant density of states, this 
result reduces to the the analytical values for &] [Z]. (Note that there is a difference of a 
factor of 

In order to cany out the RG calculation, we need to rescale the Hamiltonian at each 
iteration step. The rescaling is done by defining HN as follows: 

between our definition of (,, and those in 12, 31.) 

The rescaling factor is SN = 2((1 + which is proportional to for 
large N. The recursion relation that is the basis of our numerical RG calculation can now 
be written as 

HN+I = " H N  + (f:pfN+lp f Hc). (12) 

As we increase N ,  the system evolves from high temperatures to low temperatures. At 
a given N, the thermodynamic quantities are calculated for TN = l/(f&) for a selected 
value of B.  By studying the evolution of the many-body energy level structures we can 
obtain information near the fixed points of the Hamiltonian. 

We now provide some of the technical details of the fixed-point analysis that underlie 
the results described earlier. We will analyse the fixed points of the Hamiltonian for various 
r and initial coupling Jo. We follow [Z, 31 and consider the J = 0 and J = --CO fixed 
points. The fixed-point Hamiltonian for the J = 0 fixed point is 

f N  

There are two fixed points: one for even and another for odd N, just as in the case of the 
constant density of states. When N is odd, the single-particle energy levels (the example 
given here is for r = 0.2 and A = 2.5) are 

I$ = f0.73539.3~2.1339, W.6050, . . . , +A(j-')('+'), . . . , 

irj* = 0, +1.4931,+3.3920,3=7.2812, ,,,, M('"'+''+1/2, .,,. 

(14) 
while for even N, the single-particle energy levels are 

(15) 
We have also checked that .fo. f2, f4,. . . scale as A-N/4, while f i ,  f 3 ,  fs,. . . scale as 
~i-~(~+')'(~('+~)). Simple power counting reveals that there are no marginal and relevant 
operators around this, fixed point. The three leading irrelevant operators are oI a 
AN/('('*'))S. f&fUrvfo., 02 a AN/Q('*r))(f$fip + HC), and 03 a AN/(z(r+r))(f&fop - 
1)'. 0 1 ,  02,  and 0 3  scale with N as A-Nr/('(l+')I, AWN/', and A-N('+*)/(z(l+r)) respectively. 
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Thus, for small values of the initial coupling Jo, the J = 0 fixed point is stable. However, 
the fixed point is unstable for large coupling, as has been argued in [I]. By solving the 
perturbative scaling equation in [I], one can find a transition at J, = -Zr/(l + r ) :  for 
JO c Jc the J = 0 fixed point is unstable. Numerical values of J, are also very close to 
those obtained by perturbative scaling for small r .  When the J = 0 fixed point becomes 
unstable the Hamiltonian evolves to a different fixed point at zero temperamre. We find 
that for r < 112 this fixed point is the J = -CO fixed point described below; while for 
r 112 the zero-temperature fixed point is a completely new one, the sbucture of which 
we still do not understand. 

The Hamiltonian for the J ='-CO fixed point (both the impurity spin operator and fo 
are frozen out) is 

Because cn-l/.$, is not the same for even and odd n, the J = -CO fixed-point energy levels 
afe not the same as those~at the J = 0 fixed-point Hamiltonian. This is in contrast to 
the case of a constant density of states where the energy levels are the same except for an 
odd-even switch. When N is odd, the numerical results for the energy levels are: 

f7; = 0.51.2545, &2.9109,3=6.2500,. . . , =kAj/(l+r)-l/', . . . (17) 

while for an even N, the single-particle energy levels are 

6: = f0.63086, f2.1247,&4.6050,~ . . , fA"-l)(l+r) 1 .  . . . (18) 

In addition, we have also found that fi a A-(1-r)N/(4(1+r)) and f2 a A-@-')N/(4(1+r)). As 
in the case of constant density of states, we can write down two leading irrelevant operators: 
0 1  = ~1A~/('(~+~))(fCf~~ + HC) and 0 2  = ~,A~l('('~~))(f~f~~ - 1)'. It is easy to see 

For r > 0 0 2  is more dominant than 01. In fact, it becomes a relevant operator when 
r > 112. Thus, as we mentioned earlier, zero-temperature. fixed point for r > 112, is 
different from the J = -CO fixed point. Returning to the case of r < 112, we have checked 
that the energy level structure at low temperatures is well described by @ding these two 
operators to the fixed-point Hamiltonian. The magnitudes of wl and wz can be determined 
by fitting the energy levels. Since the irrelevant terms are of order 1 when T = TK, wl and 
w2 are of the order (l/Tx)l-r and (l/Tx)]-= respectively. 

With this fixed-point, single-particle, Hamiltonian we can calculate. Tximp at T = 0. 
For odd N (the same result is obtained for the even-N fixed-point Hamiltonian) T x ( 0 )  can 
be calculated using the formulas in [2, 31: 

that O1 &d 0' scale as l p ' ( l - W ( X l + r X  and A-N(l-zr)/(z(l+r)) resp&ively, 

The summations in the above formulas can be calculated using the trick explained in 
[2]; the result is Tximp(0) = r /8 .  Similarly we can calculate the zero-temperature effective 
entropy for the impurity: S;,(O) = 2r In2. These results were given earlier. We can then 
calculate the contribution from 0 1  and 0 2 ,  following [31, without obtaining the explicit 
values for the coefficients, and these lead to the (T/TK)'-' and (T/TK)'-* dependences 
shown in equations (2H5). 

112, as we mentioned earlier, the ground state for JO e J c ~  cannot be 
described by the J = -CO fixed point, which is essentially a pseudo-gap Fermi liquid with 

When r 
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014 r 

0 '  I 
1E-10 1E-08 1E-06 0.0001~ 0.01 

T 
Fi- 1. Txim,, plotted a5 a function of T for r = 0.2 and Jn = -0.38, -0.40, -0.42 -0.44, 
-0.48, -0.52, -0.60 and -1.0. Note that there is a vansition at around Jn Fi: -0.40 where the 
Kondo effect s m  to show. Also note the non-Er0 magnetic moment when T + 0. 

......: 
0 
1E-10 1E-08 1E-06 0.0001 0.01 1 

T 
Figure 2. D ( T )  plotted as a function of T for r = 0.2 and Jo = -0.36 and -0.48. 

the density of states containing a delta-function component. We suspect that the ground 
state in this case may exhibit essentially non-Fermi liquid behaviour. 

We now present our numerical results for the calculation of the impurity susceptibility 
ximp and zero-frequency response function ((&; S,)) (S, is the z-component of the impurity 
spin), using the procedures explained in [2, 31 and [4] respectively. 

Most of our calculations are done for r = 0.05,0.1,0.2,0.3,0.4 and 0.6. A = 2.5 is 
used for the calculation of ximp and A = 3.0 is used for the calculation of ((&; &)), except 
for the cases in which r = 0.4 and 0.6 where A = 3.0 and 4.0 are used respectively. 

We first present our results for r e f .  Figure 1 shows the temperature dependence of 
the susceptibility for the case r = 0.2 and selected values of Jo. It is clear that there is a 
critical coupling J,, separating the regime with the Kondo effect and the one without the 
Kondo effect. Also note the existence of a residual moment in the Kondo regime (Jo e J,). 
Figure 2 shows the zero-frequency response function D ( T )  = T((S,; S,)) in these two 
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regimes. In the case of constant density of states, D ( T )  and T X  have the same temperature 
dependence, and for small Jo their values are almost the same [4]. This is apparently not 
hue with the power-law density of states. In particular D ( T )  tends to zero as T + 0; this 
suggests that the impurity spin itself is quenched, but there is a residual moment due to the 
contribution from conduction electron susceptibility. 

0.4 
r=O .05, J=-0 .18 0 

0.35 - r=O.lO,J=-0.28 + - 
r=O .~20, J=-O.46 0 

r=0.20,J=-0.52 x - 
r=O .20, J=-0.60 - 
r=O. 30, J=-0.68 * 

0 .25  - r=0.40,J=-0.96 * - 

0.3 - 

0.2 

0.15 

0.1 

0.05 

0 

F 

0.001 0.01 0.1 1 10 ,100 

X 
Figure 3. F = (Tximp(T) - r/S)/(l - r - 3r2/2)  versus x = ~ ( ( T / T K ) ' - >  + ( T / T K ) ' - ~ )  
using the susceptibility data for r = 0.05, 0.1.0.2,0.3, and 0.4 and selected values of Ju, which 
are shown in the legend of the plot. The solid line represents the universal curve f (x). 

One of the important features of the Kondo problem is that thermodynamic quantities 
follow universal curves. To investigate universality in the case of the power-law density of 
states, we attempt to fit the impurity susceptibility using the function 

(7.0) 

where TK is the Kondo temperature and f ( x )  is the universal function describing the 
susceptibility in the Kondo problem for a constant density of states. The form of the 
universal function is chosen by taking into account the fact that the leading low-temperature 
behaviour is given by equation (2). For r = 0 c1 and cz are equal (since X I  = xz in 
equation (2)); while for r z 0 c1 and cz can be made equal by redefining T K .  We can thus set 
c1 = cZ = 112 in equation (20). The coefficient B is related to mo. the value of Tximp in the 
limit T.q((T((D0: B = 4(mo - r/S) .  Unforhmately, we do not have an analytical result for 
mo; we have to choose B empirically. Our choice is B = 1 - r - 3r2/2. From figure 3, it is 
clear that the data plot of F = (TXimp(T)-r /S) /B versus d((T/TK)'-~+(T/TK)'- ' j  faus 
on the universal curve f ( x ) ;  this provides strong numerical evidence of universality. Note 
that when plotting the figure, TK is chosen such that F(T = Tx) = Fo with f i  = 0.125. 

r 
8 T X i m p ( T )  - + Bf(cl(T/TK)'-* +CZ(T/TK)'--') 
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0.2 i. 4 
0.15 

0 .I 

0.05 

0 
IE-08 1E-OS 0.0001 0.01 

T 
Figure 4. Tximp. denoted as m(T) in the legend, and D ( T )  plotted as a function of T for 
r = 0.6 and 30 = -2.0. 

We have also investigated the dependence of the Kondo temperature as a function of 
Jo for a given r .  We find a linear relationship between T i  and versus Jo, thus confirming 
the result obtained in [I]: TK cx IJo - Jell”. 

J ,  the 
impurity spin is not frozen as T + 0, and there is no qualitative difference from the case 
r < l/2. For Jo < Jc (the results are plotted in figure 4), on the other hand, there is 
qualitative difference, as expected from discussion previous. The impurity spin is quenched 
( D ( T )  + 0 as T 

In conclusion we have performed a Wilson renormalization group calculation of the 
Kondo model with the density of states p ( 6 )  = Clsl‘, representing a pseudo-gap spectrum. 
A rich spectrum of interesting behaviours is found, some of which can be understood clearly 
in the framework of Wilson’s RG calculation and associated fixed-point analysis: for weak 
coupling JO > J, % -2r, there is no Kondo effect, and the system is shown to evolve to 
the J = 0 fixed point. On the other hand, for saong coupling JO < J,, the system behaves 
quite differently for r less than or larger than 112. For r 4 112, the system is found to 
evolve to the J = --oo fixed point, and the susceptibility is found to fit the universal curve: 
Tximp(T) = r /8  + (1 - r - 3 r 2 / 2 ) f ( i ( ( T / T ~ ) l - *  + (T/TK)’-’)). We have also argued 
that the ground state is effectively a pseudo-gap Fermi liquid with a delta-function excitation 
at the Fermi level. The delta-function component in  the excitation spectrum gives rise to 
a residual moment and residual entropy. For r > 112, the J = --oo fixed point becomes 
unstable and the simple Fermi liquid picture breaks down. Although there is a quenching 
of the impurity spin, the total magnetic susceptibility does not show the Kondo effect. 

We have also calculated Tximp(T) and D ( T )  for the case r > 1/2. For JO 

0); however, there is no Kondo effect quenching in TXimp(T). 
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